$B_s \to \mu^+ \mu^-$ versus Direct Higgs Searches at Hadron Colliders

Chung Kao [Jung Gau]
Fermilab
and
University of Oklahoma

Presented at the Fermi National Accelerator Laboratory, October 5 (Thursday), 2006.

$B_s \to \mu^+ \mu^-$ versus Direct Higgs Searches at Hadron Colliders

- Based on a recent paper by C. Kao and Y. Wang, Phys. Lett. B 635 (2006) 30.
- ∼ Direct search for Higgs bosons at the LHC $pp \rightarrow b\phi^0 \rightarrow b\mu^+\mu^- + X, \phi^0 = H^0, h^0, A^0$
- ∼ Indirect search for Higgs bosons in $B_s \to \mu^+ \mu^-$

The Standard Model Higgs Boson

• In the SM, there is one Higgs doublet and a spin-0 particle: the Higgs boson (H).

It can be produced at colliders:

Its decays are well known:

Why has't it been discovered yet?
We need higher energy and higher luminosity!

Branching Fractions of the Higgs Boson

Standard Model

The Search for the SM Higgs boson

• Mass limit from LEP 2 With a CM energy up to $\sqrt{s} = 209 \, \text{GeV}$ and $L = 100 \, \text{pb}^{-1}$ per experiment, a stringent mass limit for the Higgs boson at 95% C.L. is $M_{\text{H}} > 114 \, \text{GeV/c}^2$

Discovery potential of hadron colliders

- The Tevatron Run II will be able to discover a SM Higgs boson up to 190 GeV with 30 fb⁻¹, or it will exclude the Higgs boson at 95% C.L. with 10 fb⁻¹.
- The LHC will be able to observe a SM Higgs boson with a mass up to approximately 1 TeV.

Stange, Marciano, and Willenbrok (1994); Han and Zhang (1998). CMS Technical Proposal (1994); ATLAS Technical Proposal (1994); ATLAS Technical Design Report (1999).

Tevatron SM Higgs Combination

Note: the combined result is essentially equivalent to one experiment with 1.3 fb⁻¹, since both experiments have "complementary" statistics at low and high mass

→ we are indeed already close to the sensitivity required to exclude or "evidence" the higgs at the Tevatron

Gregorio Bernardi, ICHEP06, Moscow

Implications of Electroweak Precision Data for Higgs Mass with New m_t

M.W. Grunewald (2003); The D0 Collaboration (2004)

 m_{top} =173.5 +2.7-2.6(stat) ±3.0(syst) GeV/c2 The CDF Collaboration (2005).

 $m_{top} = 171.4 \pm 1.2 \pm 1.8 \; GeV/c2$ The CDF and the D0 Collaborations, hep-ex/0608032.

Problems in the SM Higgs Sector

Requiring unitarity, we must have $M_H \le 1$ TeV. If $M_H \ge 1$ TeV, WW scattering will become strong. Quadratic divergence: M_H naturally of order M_{Planck} .

One good way out:

A low energy fermion-boson supersymmetry.

The Minimal Supersymmetric Model

- In the minimal supersymmetric standard mode (MSSM), there are two Higgs doublets with vacuum expectation value (VEVs) v₁ and v₂, and five Higgs bosons: two scalars H⁰ and h⁰, one pseudoscalar A⁰, and a pair of singly charged Higgs bosons H[±].
- \sim At the tree level, $m_h \le M_Z$ 91 GeV < m_H , with radiative corrections, m_h can be in the range 125 GeV ≤ $m_h \le 135$ GeV.
- There are only two free parameters in the Higgs sector, often chosen to be m_A and $\tan \beta \equiv v_2/v_1$.

Mass limit from LEP 2

There are two complementary processes:

• With a CM energy up to $\sqrt{s} = 209\,\text{GeV}$ and $L = 100\,\text{pb}^{-1}$ per experiment, the Higgs mass reach at 95% C.L. is MSSM: $M_h, M_A > 91\,\text{GeV/c}^2$

Conclusions

- The MSSM provides the TeVatron with a real shot at a Higgs discovery
 - Light h⁰, decent xsec
 - Decays to b, τ
- Null results for ϕ^0 searches put the squeeze on the MSSM from the large tan β side

Andy Hocker, ICHEP06, Moscow

The Search for New Particles at Hadron Colliders

- We need accelerators: Fermilab Tevatron Collider near Chicago and CERN Large Hadron Collider (LHC) in Geneva.
- We need detectors: D0 and CDF (Tevatron), as well as ATLAS and CMS (LHC).
- We look for e, μ , γ (photon), jets, and hadrons (mesons or baryons).
- A jet = a quark, an anti-quark, or a gluon.

ATLAS A Toroidal LHC Apparatus

CMS Collaboration

36 Nations, 159 Institutions, 1940 Scientists (February 2003)

High Energy Frontier in HEP

Next projects on the HEP roadmap

- Large Hadron Collider LHC at CERN: pp @ 14 TeV
 - LHC will be closed and set up for beam on 1 July 2007
 - First beam in machine: August 2007
 - First collisions expected in November 2007
 - Followed by a short pilot run
 - First physics run in 2008 (starting April/May; a few fb-1?)
- · Linear Collider (ILC): e+e-@ 0.5-1 TeV
 - Strong world-wide effort to start construction earliest around 2009/2010, if approved and budget established
 - Turn on earliest 2015 (in the best of worlds)
 - Study groups in Europe, Americas and Asia (→World Wide Study)

Quest for the Higgs particle is a major motivation for these new machines

M. Lamont
Tev4LHC meeting
@ CERN (April)

Production of Higgs Bosons

- A. Gluon Fusion: $gg \rightarrow \phi^0$
- B. Bottom Quark Fusion: $b\bar{b} \rightarrow \phi^0$
- $\sigma(gg \rightarrow \phi^0 b\bar{b})[m_b(M_b)]$ $\approx 3\sigma(gg \rightarrow \phi^0 b\bar{b})[m_b(M_\phi)], M_\phi = 200 \text{ GeV}$
- $\sigma(gg \rightarrow \phi^0 b\bar{b}) \approx \sigma(b\bar{b} \rightarrow \phi^0), \, \mu_F = M_\phi/4$

V. Ravindran, J. Smith, and W.L. van Neerven (2003); R.V. Harlander & W.B. Kilgore (2002); C. Anastasiou & K. Melnikov (2002).

M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas (1995).

T. Plehn (2002); F. Maltoni, Z. Sullivan and S. Willenbrock (2003);

E. Boos and T. Plehn (2003); R.V. Harlander and W.B. Kilgore (2003).

B. Plumper, DESY-THESIS-2002-005.

J. Campbell et al., Les Houches (2003), arXiv:hep-ph/0405302.

Order Counting for Bottom Quark Fusion

Dicus, Stelzer, Sullivan and Willenbrock (1999)

```
Leading-order contribution: b\bar{b} \to H : \mathcal{O}[\alpha_s^2 \ln^2(M_H/m_b)] \mathcal{O}(\alpha_s) correction: (1) b\bar{b} \to H with virtual gluon, and (2) b\bar{b} \to Hg: soft, hard/collinear, and hard/non-colinear \mathcal{O}[(1/\ln(M_H/m_b)] correction: bg \to bH \mathcal{O}[1/\ln^2(M_H/m_b)] corrections: gg \to b\bar{b}H Next-to-leading order (NLO) correction =
```

 $\mathcal{O}(\alpha_s)$ correction $+\mathcal{O}[(1/\ln(M_H/m_b))]$ correction.

The Higgs Pseudoscalar (A⁰)

- A/H $\rightarrow \tau \tau$
- A/H $\rightarrow \mu\mu$
- A/H \rightarrow bb/ $\mu\mu$ in bb H/A
- A, H $\rightarrow \chi_2^0 \chi_2^0 \rightarrow 4l + E_T^{miss}$
- A, H in cascade decays of sparticles

Albert De Roeck, CERN SUSY 2005

$B(A^0 \text{ to } X_2 X_2)$

Discovering the Higgs Bosons with Muons

- The A⁰ and the H⁰ might be observable in a large region of parameter space with $\tan \beta \ge 10$.
- This discovery channel of $\mu^+\mu^-$ will allow precise reconstruction for the Higgs boson masses.
- Kao and Stepanov (1995);
 Barger and Kao (1998);
 Dawson, Dicus and Kao, Phys. Lett. **B545**, 132 (2002).

Cross Section in the MSSM

Minimal Supersummetry

Discovering Higgs Bosons with Muons and a Bottom Quark

S. Dawson, D. Dicus, C. Kao and R. Malhotra, Phys. Rev. Lett. 92, 241801 (2004). S. Dawson, D. Dicus, and C. Kao, Phys. Lett. B **545**, 132 (2002); V. Barger and C. Kao, Phys. Lett. B **424**, 69 (1998);

C. Kao and N. Stepanov, Phys. Rev. D **52**, 5025 (1995).

The Physics Backgrounds

- For the associated final state of $b\phi^0 \rightarrow b\mu^+\mu^-$, the dominant physics background comes from $pp \rightarrow b \mu^+\mu^- + X$, and $pp \rightarrow b\overline{b} W^+W^- \rightarrow b\overline{b} \mu^+\mu^- + E_T$
- Additional contributions come from the production of $j\mu^+\mu^-$, j=g, u, d, s, and c.
- We take the b tagging efficiency to be $\epsilon_b = 0.6$ (LL = 30 fb⁻¹) or 0.5 (HL = 300 fb⁻¹), $\epsilon_c = 0.1$ = probability of c misidentified as b, $\epsilon_i = 0.01$ = probability of jets mistagged as b.
- •ATLAS Technical Design Report (1999).

The Acceptance Cuts

We have applied realistic acceptance cuts proposed for each event at the LHC as follows.

- (a) We require 2 isolated muons with $p_T(\mu) > 20$ GeV, and $|\eta(\mu)| < 2.5$.
- (b) All jets are required to have $p_T(j) > 15 \text{ GeV (LL) or } 30 \text{ GeV (HL)} \\ \text{and } |\eta(j)| < 2.5.$
- (c) To reduce the background from \overline{bbWW} (\overline{tt}), we require $\mathbb{Z}_T < 20$ GeV (LL) or 40 GeV (HL).

S. Dawson, D. Dicus, C. Kao and R. Malhotra (2004)

The Discovery Potential

- To study the discovery potential of $pp \rightarrow b \phi^0 \rightarrow b \mu^+\mu^- + X$ we calculate the SM background from $pp \rightarrow b \mu^+\mu^- + X$ and $pp \rightarrow b\overline{b}W^+W^- \rightarrow b\overline{b} \mu^+\mu^- + X$ in the mass window of $m_{\phi} \pm \Delta M_{uu}$.
- $\Delta M_{\mu\mu} = 1.64 \left[(\Gamma_{\phi}/2.36)^2 + \sigma_m^2 \right]^{1/2}$,
- Γ_{ϕ} is the width of the Higgs boson, and
- $\sigma_{\rm m}$ = the muon mass resolution $\approx 0.02 \ {\rm m_{\phi}}$.

Discovery Potential at the LHC

Summary for Higgs Decay into Muons

- The discovery channel of $b\phi^0 \rightarrow b\mu^+\mu^-$ offers great promise to discover the A⁰ and the H⁰ at the LHC for $\tan\beta > 10$, $m_A < 650$ GeV with L = 30 fb⁻¹.
- A higher luminosity of 300 fb⁻¹ can improve the discovery reach in m_A up to $m_A = 800$ GeV.
- The $b\phi^0$ channel greatly improves the discovery potential beyond the reach of the inclusive channel $pp \to \phi^0 \to \mu^+\mu^- + X$.
- This discovery channel might provide good opportunities to measure important parameters such as the Higgs masses, tanβ, and Higgs couplings with bottom quarks and leptons.

The Minimal Supergravity Model

- ✓In the minimal supergravity unified model (mSUGRA), it is assumed that SUSY is broken in a hidden sector with SUSY breaking communicated to the observable sector through gravitational interactions, leading to a common scalar mass (m₀), a common gaugino mass (m₁/2), a common trilinear coupling (A₀), and a bilinear coupling (B₀) at the grand unified scale (M_{GUT}).
- We often choose $m_0, m_{1/2}, A_0, \tan \beta$, and sign(μ) as the 5 free parameters.
- The masses and couplings of SUSY particles are evaluated with renormalization group equations.

Barger and Kao (1998)

Higgs bosons of minimal supergravity

In addition to m_0 and $m_{1/2}$, $\tan\beta$ is a very important parameter:

- an increase in $tan\beta$ leads to a larger m_h but a reduction in m_A and m_H ;
- for $\tan \beta \sim 2$, m_A is usually large and the cross section of a Higgs signal for H^0 or A^0 is often much smaller than that of the background;
- for $\tan\beta \ge 35$, the cross section of the Higgs signal is greatly enhanced and can become slightly larger than the background.

$$B_s \to \mu^+ \mu^-$$

This rare decay has a small branching fraction in the Standard Model $B(B_s \to \mu^+ \mu^-) = 3.4 \times 10^{-9}$

The current experimental upper limit from CDF and D0 is

$$B(B_s \to \mu^+ \mu^-) < 1.5 \times 10^{-7}$$

$B_s \rightarrow \mu\mu$ and SUSY

$$B(B_s \to \mu^+ \mu^-) \sim 5 \times 10^{-7} \left(\frac{\tan \beta}{50}\right)^6 \left(\frac{300 \text{GeV}}{M_A}\right)^4$$

The discovery region of a neutral Higgs boson through pp -> bH -> b mu mu at LHC and the discovery region of Bs -> mu mu at Tevatron and LHC overlap.

C. Kao and Y. Wang (2006)

Y Okada (ICHEP 2006)

Comparison with the charged Higgs boson production at LHC

- •The parameter region covered by B decays and the charged Higgs production overlaps.
- •If both experiments find positive effects, we can perform Universality Test of the charged Higgs couplings.

B-> τv : H-b-u coupling B->D τv : H-b-c coupling gb->tH: H-b-t coupling

 $ab \rightarrow tH^{+}$

g SUSY loop vertex correction can break the universality.

State-of-the-art (before ICHEP06)

All decay channels beyond the reach of experiments:

Mode	$B_s^0 o \mu^+\mu^-$	$B_d^0 o \mu^+ \mu^-$	Reference
SM Expect.	3.5×10^{-9}	1.0×10^{-10}	Buras, 2003
CLEO	9	6.1×10^{-7}	PRD62, 091102
BELLE	-	1.6×10^{-7}	PRD68, 111101
CDF	5.8×10^{-7}	1.5×10^{-7}	PRL93, 032001
D0	4.1×10^{-7}	-	PRL94, 071802
BABAR	Ξ.	0.61×10^{-7}	PRL94, 221803
CDF	1.5×10^{-7}	0.39×10^{-7}	PRL95, 221805 + Err.
CDF	0.8×10^{-7}	0.23×10^{-7}	CDF public note 8176

B-factories search also for

$$\triangleright B^0 \rightarrow e^+e^-$$

$$\triangleright B^0 \rightarrow e^{\pm} \mu^{\mp}$$

- SM branching ratio is very low:
 - $\blacktriangleright b \overline{b}$ cross section at LHC $\sim 10 \times$ larger than at Tevatron
 - ▶ Events can be triggered at high luminosity

Conclusions

- ullet First CMS update on search for $B_s^0 o \mu^+\mu^-$ since 1999
 - ightharpoonup Full reconstruction with pileup for $2 imes 10^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$
- Expected upper limit in 10 fb $^{-1}$: $\mathcal{B}(B_s^0 \to \mu^+\mu^-) \le 1.4 \times 10^{-8}$
 - > study limited by size of background MC sample
 - ▶ good mass resolution
- Outlook
 - \triangleright include rare B decays
 - ▶ full analysis: likelihood selection and normalization sample

(from hep-ph/0310042)

 $B_s \to \mu^+ \mu^-$ in the MSSM

We consider SUSY contributions from loop diagrams involving

- the charged Higgs boson,
- ~ the charginos,
- ~ the neutrinos, and
- ~ the gluino.

Feynman Diagrams

Recent Studies

- Mizukoshi, Tata and Wang (2002).
- Babu and Kolda (2000).
- Arnowitt, Dutta, Kamon and Tanaka (2002); Bobeth, Ewerth, Kruger and Urban (2002); Buras, Chankowski, Rosiek and Slawianowska (2002); Kane, Kolda and Lennon (2003; Dedes and Pilaftsis (2002); Dedes (2003); Dedes and Huffma (2004).
- Ellis, Olive and Spanos (2005); Ellis, Olive, Santoso and Spanos (2006).
- Isidori and Paradisi (2006).
- Carena, Menon, Noriega-Papaqui, Szynkman and Wagner (2006).

Branching Fraction versus m_A

Branching Fraction versus tan(beta)

 $tan\beta$

 $tan\beta$

Minimal Supersymmetric Model

MSSM

Minimal Supergravity Model

mSUGRA

Non-universal Supergravity Models

- Supergravity models with non-universal Higgs boson masses (NUHM SUGRA) give more interesting rates.
- The Higgs masses at M_{GUT} are chosen to be $m_{H_i}^2(GUT) = (1 + \delta_i)m_0^2, i = 1, 2.$
- In our NUHM SUGRA cases, m_A and m_H are smaller than those in the mSUGRA model for the same values of m₀ and m_{1/2}.
- Consequently, both

$$b\phi^0 \to b\mu^+\mu^- \text{ and } B_s \to \mu^+\mu^-$$

will be able to cover regions of the parameter space with larger values of m_0 and $m_{1/2}$.

NUHM SUGRA Case I

NUHM SUGRA Case II

NUHM SUGRA Case III

Summary

- (a) The contours for B($B_s \to \mu^+\mu^-$) = 1 × 10⁻⁸ in the parameter space are very close to the 5 σ contours for $pp \to b\phi^0 \to b\mu^+\mu^- + X$, at the LHC with L=30 fb⁻¹.
- (b) The regions covered by $B(B_s \to \mu^+\mu^-) \ge 5 \times 10^{-9}$ and the discovery region for $b\phi^0 \to b\mu^+\mu^-$ with 300 fb⁻¹ are complementary in the mSUGRA parameter space.
- (c) in SUGRA models with nonuniversal Higgs masses, a discovery for B($B_s \to \mu^+\mu^-$) $\simeq 5 \times 10^{-9}$ at the LHC will cover regions of the parameter space beyond the direct search for $pp \to b\phi^0 \to b\mu^+\mu^- + X$, with $L=300~{\rm fb}^{-1}$.